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ABSTRACT A formally unitary Lagrangian model gauging an
internal supersymmetry is proposed. The even subalgebra is
gauged as a Yang-Mills theory, while the odd generators are
gauged-according to Freedman's method-by skew tensor fields,
equivalent dynamically to scalar Higgs fields. Chiral fermions are
incorporated by following Townsend's construction and form ir-
reducible supermultiplets graded by their helicity. The application
to quantum asthenodynamics is discussed.

1. This paper presents a model-theory for the gauging of an
internal simple supergroup 'S. Its simple generator superal-
gebra g is exponentiated with parameters supplied by Grass-
mann's original exterior algebra fQ of forms over space-time.
The corresponding reducible Lie algebra g is given by the even
part of the direct product g 0 Q-i.e.,

9 = (g+ 0 fQ+) ED (g 09 Ql). [1.1]

(The +/- indices denote even/odd gradings in both super-
algebras.)
We have three aims in presenting these results: (i) to present

a novel way in which a gauge supergroup may mix internal sym-
metry with external action over space-time, a point of physical
interest; (ii) to display the resulting system of generalized con-
nections and curvatures, a mathematical result that might have
some applications in differential geometry, and to provide a
nontrivial example of a Cartan integrable system; and (iii) to
suggest an outline for adynamical realization of a tentative SU(2/
1) gauge symmetry describing a constrained asthenodynamic
(weak electromagnetic unified) interaction (1-3) and to explain
some of the more puzzling features of that model: the group
metric, grading by chiralities, and identification of states with
ghost statistics in the multiplets.

2. It was recently noted (1-3) that the number ofindependent
arbitrary assumptions required by the algebraically nonsimple
SU(2) X U(1) gauge theory (4, 5) of "unified" weak electro-
magnetic interactions is greatly reduced by the application of
the simple supergroup SU(2/1) D SU(2) X U(1) as a higher
constraining internal symmetry. The five independent multi-
plets 2(v°, ejj) and I(e-) selected for the leptons and 2(uL'3,
d"17"), 1(u23 ), I(dij3) for the quarks (in any one generation) in
the Weinberg-Salam group assignments are replaced (up to
statistics) by the two fundamental irreducible representations
(3, 6) of SU(2/1): 3(o°, el/e-) and the fractionally charged
4(u2'3/u2'3, d1 13I/dR13"). Moreover, for integer electric charges,
the SU(2/1) irrep 4 - 3 ED 1, so that the 3 structure for leptons
and the decoupling of v° are predicted by SU(2/1). In addition,
as against the arbitrary selection of an SU(2) doublet for the
spontaneous SU(2) X U(1) symmetry breakdown in Gold-

stone-Higgs hi fields, we find that in SU(2/1), these h' fit in
the adjoint representation, together with the Faddeev-Popov
ghosts aa. At the classification level, thus, SU(2/1) is rather
promising; moreover, more recently it has been possible (7) to
extend the method to further unification with the strong inter-
actions' conjectured color SU(3). The specific selection ofSU(7/
1) as the overall simple unifying group (8) produces an anomaly-
free SU(7) renormalizable gauge theory with a prediction of
eight generations (= 16 flavors), half of them chiral-inverted,
thus imposing uniquely the "critical" quantum chromody-
namics (i.e., with a factorable Pomeranchuk trajectory). Else-
where, the pion model also can be superunified (9) by using the
superalgebra Q(3).
The main difficulty facing internal supersymmetry is to pro-

vide a correct interpretation of the odd generators of the su-
peralgebra. Any irreducible representation is made up of Bose
and Fermi particles. Thus, ifthe supergroup is assumed to com-
mute with the Lorentz group, part of those particles violate the
spin statistics theorem. We have assumed (1, 3) that those ghost
states should be interpreted as generalized Faddeev-Popov
unitarity ghost states, generalizing to every multiplet the pat-
tern of the scalar Higgs field plus Faddeev-Popov ghost sector.
In particular, the Yang-Mills SU(2) X U(1) vector bosons
(W',4ZAAem) should be completed by a (pair of) isodoublet
vector ghost states pf. (and p). In 1981, we constructed a closed
irreducible extended Becchi-Rouet-Stora (BRS) algebra (10) for
just those fields, however without being able to explain the role
of the ,, (83 ) in unitarity. In the new framework presented in
this paper, the BRS algebra will be modified, and the ,
will appear naturally as the vector ghosts of a Bose skew tensor
field B ,, gauging g-. In a way, we shall explicitly construct a
realization of the operator E,, conjectured by us earlier (3). The
price paid is that our new Bose algebra g is reducible with SU(2)
X U(1) as its maximal simple Lie subalgebra. However, two
other difficulties of the model are resolved at the same time.
The algebra is a Lie algebra and, therefore, should be normal-
ized by traces rather than by supertraces, thus yielding a pos-
itive definite metric in the SU(2) x U(1) sector and confirming
a Weinberg angle of sin2 9 = 1/4. The reducibility of the boson
vector algebra is necessary because it implies the vanishing of
the Killing metric in the Higgs sector, therefore allowing the
use of the SU(2) x U(1) positive norm in the Higgs and matter
sectors.
The second difficulty resolved by the present approach is the

detailed understanding of the role ofthe matter ghost fields and
of the grading of the physical spinor fields by their helicity.
These results are explained in section 6.

As yet we have no complete understanding of the symmetry
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breaking and cannot confirm our 250-GeV conjecture (3) for the
mass of the physical Higgs field.

3. In order to exponentiate a superalgebra g = g + + g -, it
is always necessary to introduce an exterior algebra of anticom-
muting parameters. In this way one constructs a Lie group
% (g,fl) = exp (C+ 0) g' + fl- 0 g-). This group always admits
an underlying Lie algebra g, generally reducible, whose di-
mensionality depends on Q.

g = fQ+0g,EDg f(E g

dim(g) = 1/2 dim(g)-dim(fl). [3.1]

However, some real forms of simple supergroups do not ad-
mit an underlying superalgebra (11). In the following, we shall
work out a model where fl is taken to be the exterior algebra
of forms over space-time itself. Therefore, the corresponding
gauge theory is highly soldered to the base space. Nevertheless,
most of the attractive properties of differential geometry are
maintained, and our construction provides a nontrivial example
of a Cartan integrable system (12). The generators of g will be
denoted as Ak = P 'a,Ad = /i dx, AkIV = Aa dx' A dx', . . . (Aa
E g Ayi E g
The Lie bracket is defined as the exterior product for the

forms times the Lie superbracket [M, N }. For instance

[A ,Akj} - dx' A dx' {figi, Lj} = f ~,,a A W. [3.2]
The Jacobi identity is automatically satisfied. Throughout

this paper we use square brackets to denote SU(2) X U(1) com-
mutation relationships and curly brackets to denote the rela-
tionships specific to the superalgebra SU(2/1). They really de-
note commutators and anticommutators of number matrices,
once all exterior products have been evaluated.

Such a generalized gauge theory involves a generalized sys-
tem of connections, skew-symmetric contravariant, and Bose
tensor gauge fields Aj, B. v, C. vp, and E a of alternating su-
pergroup gradings, saturating the dimensionality of space-time
forms. Under an infinitesimal transformation with parameter
£(eGA /AvAvp) E vp,), the gauge fields vary according to

8A = -DE ():= de(°) -[AE(°)]
BB =-De(1) -[B- E()]
AC = -DE - {B,E(l)}-[C-E(O)]

-.I(O)

-.fE (1)

-:f) (2)

BE = -DE(3 - [B,E(2)] - [CEM')] - [E,E(2)] =- DE(), [3.3]

where D denotes the Aa covariant differential with gauge field
An, d is the external differential, A = Aa qta dx', B = 1/2 B',
Ai dx'A dxv, C = l/6C dx A dxvA dxP, E = 1/24 E
dx' A dxv A dxP A dxv, and exterior products are implied

These equations define the action of the generalized covar-
iant derivative D). The generalized curvature F is similarly
defined,

F = (FaGi,Ha)

Fa = dA + l/2[A,A]a

G = (DB)'
Ha = (DC)a + 1/2{B,B}a. [3.4]

These curvatures transform covariantly,
8F = [t,F]: 8F =-[F, F

G = -[G,e(O)]-[F- E(1)]
AH = - [H,E(O)] - {G,e(1)}[ F E(2)], [3.5]

and satisfy the Bianchi identity
DF = 0: DF = 0

DG + [B,F] = 0. [3.6]

4. Along the same lines, an irreducible representation R =

RI + R- of the superalgebra g will give rise to a representation
A of g. Denote by 4 a system of 0,1,2... forms taking their val-
ues alternatively in R+ and R-, 4(4A, H I dxAA dx,P

1 ),
The representation is defined by the transformation rules,

a4 = [E(O) 4)]

4-= [E(0), ] + {£E('), }

8 = [( , I + I ) 4i} + [£(2) 4] [4.1]

with the Jacobi identity automatically satisfied. In the SU(2/
1) system, the connections (Eqs. 3.3) are the generalized gauge
fields and the curvatures (Eqs. 3.4) are their field strengths. For
the leptons (and quarks) we have a doublet left-spinor (W)L to-
gether with a singlet (two singlets) left-vector-spinor (41')L, etc.,
all with Fermi statistics.

5. We now show a free-field Lagrangian such that it has pre-
cisely the same physical degrees of freedom as the Wein-
berg-Salam model. Given a skewp-tensor 4,. and its exterior
derivative (or generalized curl), this is

[5.1]

For a scalar 4, this is the Klein-Gordon equation; for 4,,, this
is Maxwell's Lagrangian; for 4,., this is Kalb-Ramond field (13,
14). In N dimensions (N-1 space-type dimensions and one time
dimension) and for the massless Lagrangian (Eq. 5.1), there is
a duality equivalence (15) between p and N-p-2 forms (this is
Hodge duality in the transverse dimensions).

It can be shown that the number of physical degrees of free-
dom n for the gauge fields (Eqs. 3.3) is precisely given by adding
up the number (k ) of components of an antisymmetric k-indi-
ces tensor in N dimensions, together with the number of dy-
contracted components of its complexified (10, 16) geometrical
vertical complements [in the direction of the fiber yM, in the
bundle manifold (9, 17)], ghosts counting negatively. For the
forms in Eqs. 3.3, with the fiber-complexified forms denoted
by a caret,

A = A.dX+ AM dym + ANdp =AAdx+ a +a

B=1/2 B',, dxAA dxv + Bi dx A dYM + Bixd A dYN

+ 1/2 B'iN dym A dyN + BM dyM A dN

+ 1/2 Bi- - dyM' A dyN

1/2 B', dx'A dxv + Bi dx'

+ at day + bV + hi + b'

C= /6C dx'A dxvA dxP + 2 Ca vM dx'A dxvA dyM

+l1/2 C/ dx' A dxv A dN

+ /2 CaMN dx' A dym A dyN

+JCMN dxg A dyMAd-N+'i2C~1MdxA AdyMAdN

Physics: Thierry-Mieg and Ne'eman
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+ 1/6 CaNP dyM A dyN A dyp = oLdx + XL+ + XL-

+ /acMN dym A dyNAdy

+ l/,CaMNdYMAd-NAd-P

+ '/6CtMp diyMAdNAdyp

= 1/6C,, dx A dxvA dx
p

+ 1/2 +

+ (Ca+ + Ca + Ca- )dxA +-a---

+ ya+ + ya- + ma++++ etc.

Latin letters denote Bose fields; Greek, Fermi ghost fields
have (per internal index) for N = 4,

n(B) = (4) - (2 X 4)+3= 1

n(C) = ( - (2 X 6) + (3 X 4) - 4 = 0

n(E) = 4 - (2 X 4) + (3 X 6) - (4 X 4) + 5 =0.

The bosonic vector-spinor ghosts xL+ (and xL-) can now be
identified with the ghost state with OfR internal isoscalar quan-

tum numbers (1, 3, 9) appearing together with the XL doublets
in 3 or 4 of SU(2/1) [and its symmetric Curci-Ferrari extension
for xL- (10)].

It is indeed remarkable that the Townsend Lagrangian thus
should explain both the ghost statistics and the chiral inversion
in the SU(2/1) matter multiplets, explaining another puzzling
feature brought out by the classifying supergroup.

7. The Interacting Lagrangian. For several reasons, there
is no trivial generalization ofthe Abelian Lagrangian to the non-

Abelian case. On one hand, the Lie algebra is reducible, and
[5.2] its Killing metric is nonzero only in the Aa sector, so only the
We Yang-Mills vector Lagrangian comes out as a natural invariant.

On the other hand, if we consider as a Lagrangian for the B.
the term

[7.1]

using the SU(2) x U(1) symmetric bij metric, the B ,l equation
of the motion DMGAp = 0 enforces the constraint

DMLDvGvp = [F G vp,] = 0.

[5.3]

Actually, the (y,y) could be replaced by anticommuting 0,@
parameters (18) without altering in any way our counting pro-
cedure. We note that Bf contains a scalar real hi multiplet, re-

quired in the SU(2/1) irreps 8'(aa,hW) or 8'(Va,hi), in the
Curci-Ferrari type ofsymmetric-complexified algebra ofghosts
(16). The higher forms C and E do not contribute to the physical
spectrum, nor would the total contribution of the system of
nonvanishing ghosts of a higher tensor.

6. Taking the lepton triplet of SU(2/1) as an example, we use

the Weyl action for the massless left isodoublet (v{, eL). On
the other hand, we use the Townsend (19, 20) action for q,

L

an isosinglet left vector-spinor. We denote by Y.,, an auxiliary
Dirac spinor two-form and by qO an auxiliary right spinor one-

form (we use 2-spinor notation):

EeR EA VP (YA (V#U + ov IP)

[6.11

The YA,, equations of motion enforce the constraints

dqL + oA q,R = 0, dqR = 0,

which have the solution (20)

q,L = dTL + o A vR

R = dVR, [6.3]

and the Lagrangian is equivalent up to the equations ofmotions
to a Weyl Lagrangian, in terms of the right spinor vR

£R-IA RVPVRA oC A Ao.V AaPVR = VR
OM a, vR [6.4]

The left vector-spinor q4 in Eq. 6.1 thus is seen to represent
physically a right spinor vR, thus fitting the right isosinglet fer-
mions such as e . On the other hand, the formal left vector-
spinor q4 is a one-form whose vertical complement is given by

AL = AL dxM + A dym + AN dy

[7.2]

The natural invariance of the Lagrangian under covariant
BRS variations SB,,, = D[, (,] is also lost if the constraint is not
satisfied:

STB = GMLvp DADIJ3p = [GMVpF,&v]l3p, [7.3]

where f,3 is the vector ghost in Eqs. 5.2 and S = s + [a, ] of
ref. 21. Exactly the same defects plague the vector-ghost sector
of the once gauge-fixed Freedman-Townsend Lagrangian T.
= D[; f3,,] D,L Pf,, in the covariant quantization formalism (refs.
21 and 22). In the latter case, we have recently proposed, in
collaboration with Laurent Baulieu, a solution based on the
existence of a secondary gauge invariance of the classical La-
grangian under a transformation with scalar ghost parameter K,

SB = [FK] = DDK.
The usual BRS quantization procedure (23, 24) then leads

naturally to a modified constraint-free and gauge-invariant La-
grangian for the /3' field:

fel = SS (BLV)2 = (DE, (TV + DV2))(DM(V + DVK)) + [7.4]

Pff--LJj In the present framework, the constraints manifest them-
selves already at the classical level. The following method, how-
ever, permits a direct transition from Ad to ' considered as

[6.2] classical Lagrangians. Inspired by Dirac's work, we simply in-
troduce a Lagrange multiplier K, whose equation ofthe motion
enforces the differential constraints and consider the Lagrangian

[7.5].T = - '/12 (el'^' (D,,(B, + DKp)))2.

The equations of motion are

Dt.(D[A(BvpI + D[vKp])) = 0

[ FAVD[ BVp]] = 0, [7.6]

and the system is now closed. At the same time, £ey is invariant
under the nilpotent BRS algebra (refs. 17 and 22) involving
fields and ghosts from Eqs. 5.2, and with K as the ghost ofK,

Sa = 1/2 [a,a]
SAL = a u

[6.5]

Proc. Natl. Acad. Sci. USA 79 (1982)
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Sb = 0
SK = -b

so, = D~,b
SKM = -(,( + DMK) := -

SB, = D[M PI] + [FAV)K] = DIM TV].

We have explicitly recovered our solution of Townsend's
problem as a subcase. Incidentally, the possibility of extending
the BRS algebra of Townsend's o model by the inclusion of KM,
indicates that Eq. 7.5 might be an admissible counterterm in
that theory. The reciprocal is not true. Here, all the funda-
mental fields-i.e., those which appear in B(BMV,A3,, b)-have
canonical dimension one. The KMA and its pair of ghosts have
dimension zero. In a proper gauge they are expected to de-
couple, therefore ensuring (i) the renormalizability ofthe theory
by power counting and (ii) its formal unitarity.

Our method admits a direct generalization to the Ca, field,
whereas theEp has no curl in four dimensions. The complete
classical gauge Lagrangian can be written involving the auxiliary
two-form L(LVL,,AA ,l1)

£e = -1/4 (F. (A))2 - '/12 (DiM B, 1)2

-1/48 (D[M C'] + 1/2 {BXBi})2

BV BZV+ D[MKV], C'vp:= CMVP + D[ALvp]. [7.8]

The squares are computed using the 8ab, 8,Y metric, implying
sin26. = 0.25. This Lagrangian is invariant under the nilpotent
BRS algebra given above augmented by the C AVp sector:

Sy= '/2{b,b}, SI= -y- 1/2{K,b} = -y'

SCM = DM y' + {X3',b},

SAM, = -cM - D - {KMK,b}:= -c;

srF =D C1 + 1/2 {/P'I,'l + IB'}b

SL V =- [FM A,,DAV- {BV,KK}-1/2 {JflI1Kv1} : V

SCMVP = D[FIp + {BA,13']}. [7.9]

At the linearized level, we recover the Weinberg-Salam
spectrum.

Note that the closure of the BRS algebra is equivalent,
through complexification of the y and projection in the dy, dp
sectors, to the closure of the extended Curci-Ferrari algebra.
No additional calculations are required.

8. Let us now construct a BRS algebra (17, 22) for chiral spinor
fields. We start from a left chiral spin 1/2 R+ multiplet 4L and
write:

SpL= 0. [8.1]

We now introduce a left chiral vector spinor q4,, its left chiral
Bose spin 1/2 ghost xL+, and an auxiliary spin 1/2 fermion qL,
all valued in R-. The nilpotent BRS algebra is uniquely defined
as

S x+ = -{b, (}

S-q = X+ + {K,+?}

S ,, = DMx + {/f3',, + {K,DM44.

We can now construct the covariant differential

D[L Tpv] = D[/L Tiv] + IBZv,01 + {KIM,,Dv]4} + [FAV37]
SD5+,= 0,

[7.7] and the invariant spinor

+I'M= ~'M+K+{KM,4} + DMq

Six= O.

Townsend's Lagrangian now generalizes into:

£12 = ku Ap(y 4-AL + a R)

+ y f~v(pR+(RDM Dv p)

[8.3]

[8.4]

+ AL 0 oL. [8.5]
At the linearized level, we recover Townsend's Lagrangian

and propagate a left doublet (vL, eLj) and a right singlet (eR).
The dynamical part of the Lagrangian is the generalized Rar-
ita-Schwinger term containing a coupling SAL q, {B,,, 4}, which
replaces the usual mass term of the Weinberg-Salam model.

9. The pattern ofspontaneous symmetry breakdown is crucial
for the application of the model to experiment. Obviously, the
tensor Bin may not take a vacuum expectation value without
breaking at the same time the Lorentz group. However, its cen-
tral scalar Bose ghost hi = BMN dyM A dyN has the quantum
numbers of the ordinary Higgs. Furthermore the term (DC)2
contains (BX,)4, which generalizes in the ghost expansion to
(hi)4. Therefore, we conjecture that, in the fully quantized the-
ory, (h%)0 $ 0. We remark that a term S3 I r) = a {h, 4}
+ ... is BRS admissible and represents an arbitrary (electron)
mass term. Spontaneous symmetry breakdown also seems in-
tertwined deeply with the problem of the differential con-
straints in this theory. Indeed, the theory is unstable for g --

0 as the constraint [F,*G] [dA,*dB] = 0 is present for g #
0 but is of order 0 in g. The constraint obviously admits as a
solution the usual symmetry breaking pattern, G' in the group
direction P'6 and F a confined to the photon direction 1/F2 (A3

10. In conclusion, using the dxM generators of the original
Grassmann exterior algebra over space-time, we have associ-
ated to any simple superalgebra a reducible Lie algebra whose
connection defines a set of skew tensor fields. The Bianchi
identity is maintained and defines a Cartan integrable system.
The corresponding gauge theory is BRS invariant, seems for-
mally unitary and renormalizable provided a set of dimension
0 auxiliary fields, which play the role of Dirac multipliers of the
differential constraints, can be consistently eliminated. Applied-
to SU(2/1) quantum asthenodynamics, the model successfully
restricts the arbitrariness of the Weinberg-Salam model. It
yields a positive definite physical subspace and a consistent
interpretation of all ghost states and explains the grading of the
quark and lepton multiplets by their chirality.
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